|   | CHAPTER 8                                                                                             |
|---|-------------------------------------------------------------------------------------------------------|
|   | APPLICATION OF INTEGRALS                                                                              |
|   | ASSERTION REASIONING QUESTIONS                                                                        |
|   | OPTIONS:                                                                                              |
|   | (A) Both Assertion and reason are true and reason is correct explanation of assertion.                |
|   | (B) Assertion and reason both are true but reason is not the correct explanation of                   |
|   | assertion.                                                                                            |
|   | (C) Assertion is true, reason is false.                                                               |
|   | (D) Assertion is false, reason is true.                                                               |
| 1 | Assertion:                                                                                            |
|   | The area bounded by the curve $y = f(x)$ , the x - axis and the ordinates $x = a$ and $y = b$ is      |
|   | given by                                                                                              |
|   | Reason:                                                                                               |
|   | If the curve $y = f(x)$ lies below $x - axis$ , then the area bounded by the curve $y = f(x)$ , the x |
|   | -axis and the ordinates x = a and y = b is given by                                                   |
| 2 | Assertion :                                                                                           |
|   | The area bounded by the parabola $y^2 = 4ax$ and its latus rectum is $\frac{8}{3}a^2 sq$ . unit.      |
|   | Reason::                                                                                              |
|   | 8                                                                                                     |
|   | The area bounded by the parabola $x^2 = 4ay$ and its latus rectum is $\frac{1}{3}a^2 sq$ . unit.      |
| 3 | Assertion:                                                                                            |
|   | The area bounded by the parabola $x^2$ = 4ay and its latus rectum is $\frac{3}{3}a^2$ sq. unit.       |
|   | Reason:                                                                                               |
|   | The area bounded by $y = 2x - x^2$ and $x - axis$ is 8/3 sq. unit.                                    |
| 4 | Assertion:                                                                                            |
|   | The area bounded by $y = 2x - x^2$ and $x - axis$ is 8/3 sq. unit.                                    |

|    | Reason::                                                                                         |
|----|--------------------------------------------------------------------------------------------------|
|    | The area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\pi ab$ sq. unit.    |
|    |                                                                                                  |
| 5  | Assertion:                                                                                       |
|    | The area bounded by the parabola $y^2 = 4ax$ and its latus rectum is $\frac{3}{3}a^2 sq$ . unit. |
|    | Reason::                                                                                         |
|    | The area bounded by the curve $y = f(x)$ the x - axis and the ordinates $x = a$ and $y = b$ is   |
|    | given by                                                                                         |
| 6  | = 2 + - 2 + 0                                                                                    |
| 0  | (A) If the area enclosed between the curve $y = ax^2$ and $x = ay^2(a < 9)$ is 1 sq.unit then    |
|    | value of a is .                                                                                  |
|    | (R) Area between $y = ax^2$ and $x = ay^2$ is given by                                           |
|    | Solving the integral<br>$1 = \frac{3}{3} \frac{2}{a}$                                            |
|    | 1                                                                                                |
|    | $\overline{3}_{2}^{2}$                                                                           |
|    | (a > 0)                                                                                          |
| 7. |                                                                                                  |

ZIET, BHUBANESWAR



|     | and $x = b$ is given by                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------|
| 10  | (A)<br>(A)<br>(A)<br>(B)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C                           |
| 11  | Assertion: The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\pi ab$ sq units. |
|     | Reason: The area enclosed by the ellipse                                                                  |
|     | dx                                                                                                        |
| 12. | Assertion: Area of region bounded by the triangle whose vertices are A(1,0), B(2,2) and                   |
|     | C(3,1) is $-$ sq units.                                                                                   |
|     |                                                                                                           |
|     | Reason: The area of the circle $x^2 + y^2 = 32$ is $32\pi$ sq units.                                      |
| 13. | Assertion: There are two curves represented by $y=f(x)$ and $y=g(x)$ , here the points of                 |
|     | intersection of these two curves. Then the area between two curves is .                                   |
|     | Reason: Integration is the act of calculating the area by cutting the region into a large                 |
|     | number of small strips of elementary area and then adding up these elementary areas.                      |
| 14. | Assertion: The area function defined by where the function f is assumed to be                             |
|     | continuous on [a,b]. Then $A'(x) = f(x)$ for all $x \in [a,b]$                                            |
|     | Reason: f be a continuous function of x defined on the closed interval [a,b] and F be                     |
|     | another function such that $\frac{dF(x)}{dx} = f(x)$ for all x in the domain of f, then                   |
| 15. | Assertion: The area bounded by the curve                                                                  |

|    | 17                                                                                                                                                          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $f(x) = x^3$ , the $x^-$ axis and the ordinates $x^{-2} = x^2$ and $x^{-1} = x^3$ is $\frac{1}{4}$ sq units.                                                |
|    |                                                                                                                                                             |
|    | Reason: represent the area between curve f(x), lines x=a, x=b and x=axis.                                                                                   |
| 16 | 2_2                                                                                                                                                         |
|    | Assertion (A): The area bounded by the curve $y^2=4ax$ and the line $y=2a$ and y-axis is $\frac{a}{3}$                                                      |
|    |                                                                                                                                                             |
|    | sq. units.                                                                                                                                                  |
|    | Reason (R): If the curve $y = f(x)$ , the y-axis and the abscissa $y=c$ and $y=d$ is given by                                                               |
| 17 |                                                                                                                                                             |
| 17 | Assertion (A): The area bounded by the curve $y=x x $ , x-axis and the ordinates x=-3 and                                                                   |
|    | x=3 is 20 sq. units.                                                                                                                                        |
|    |                                                                                                                                                             |
|    | Reason (R): $y=x x $ , being an odd function is symmetric in opposite quadrants.                                                                            |
|    | Therefore, required are is twice of the area of the shaded region in first quadrant                                                                         |
| 18 | Assertion (A): The area of triangle ABC whose vertices have coordinates A(2,5) ,B(4,7)                                                                      |
|    | and C(6,2) is 7 sq.units.                                                                                                                                   |
|    | Reason (R):Two curves are symmetric about x=1/ .So, required area=4(Area OACD)                                                                              |
| 19 | Assertion (A): If the area enclosed between the curves $y=ax^2$ and $x=ay^2$ (a>0)is 1 square                                                               |
|    | unit, then the value of a is .                                                                                                                              |
|    | Reason (R):When we rotate the above figure the area of the bounded region is change                                                                         |
| 20 | 1                                                                                                                                                           |
|    | Assertion (A): The area between the curve y = 1- $ x $ and the positive x-axis is $\frac{1}{2}$                                                             |
|    |                                                                                                                                                             |
|    | Reason (R): The area between the curve and the x-axis is half of the area between the                                                                       |
|    | curve and positive x-axis                                                                                                                                   |
| 21 | A:Numerical calculation of Area under a curve can be negative                                                                                               |
|    | R.Integration can be negative                                                                                                                               |
| 22 | A: Area bounded by the curve $y = \sin y$ between $y = 0$ and $y = \pi$ is some as Area bounded                                                             |
|    | A. Alea bounded by the curve $y = \sin x$ between $x = 0$ and $x = 7$ is same as Alea bounded<br>by the curve $y = \sin x$ between $x = \pi$ and $y = 2\pi$ |
|    | by the curve y - Shi x between x - $\pi$ and x -2 $\pi$                                                                                                     |
|    | $\kappa$ :y = sin x curve is symmetric in the intervals[-π,0],[0,π],[π,2π],                                                                                 |
| 23 |                                                                                                                                                             |

|    | A: The definite integral of f in [a,b] cannot give exactly same area under the curve from a                         |  |
|----|---------------------------------------------------------------------------------------------------------------------|--|
|    | to b                                                                                                                |  |
|    | R: indefinite integral is done by approximation and it is a limiting value                                          |  |
| 24 | A:Formula for finding area inside an ellipse can be determines by application of integr                             |  |
|    | R:it can be done for standard equation of ellipse, then as per situation the value of                               |  |
|    | constants in that equation can be put                                                                               |  |
| 25 | A:To find area under identity function f(x)=6 in [1,4] we do not need integration                                   |  |
|    | R: the area is simply a rectangle with length 3 unit and breadth 6 unit                                             |  |
| 26 |                                                                                                                     |  |
|    | Assertion: Area of the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\pi$ ab sq. units |  |
|    | Reason: Expression for the area is 4 (taking vertical strips)                                                       |  |
| 27 | Assertion: The area of the region bounded by the curve $y = x^2$ and the line $y = 4$ is 32/3                       |  |
|    | sq units.                                                                                                           |  |
|    | Reason: Expression for the area is 2 (considering horizontal strips).                                               |  |
| 28 | Assertion: The area enclosed by the circle $x^2 + y^2 = a^2$ is $\pi a^2$ .                                         |  |
|    |                                                                                                                     |  |
|    | Reason: expression for area is 4 (considering Horizontal strip)                                                     |  |
| 29 | Assertion: The area of the parabola $y^2 = 4ax$ bounded by its latus rectum is 8/3 $a^2$ sq.                        |  |
|    | units.                                                                                                              |  |
|    | Reason: Equation of latus rectum is x = a.                                                                          |  |
| 30 | Assertion: The area of the region bounded by the line y = 3x+2, the x axis and the                                  |  |
|    | ordinates x = - 1and x = 1is 13/3 sq units.                                                                         |  |
|    | Reason: The graph of line lies below x- axis for x $(-1, -2/3)$ and above x- axis for x $(-1, -2/3)$                |  |
|    | 2/3, 1)                                                                                                             |  |

## ANSWERS

ANSWER

| QUESTION |   |
|----------|---|
| NUMBER   |   |
| 1        | A |
| 2        | В |
| 3        | C |
| 4        | D |
| 5        | A |
| 6        | D |
| 7        | A |
| 8        | A |
| 9        | В |
| 10       | C |
| 11       | 1 |
| 12       | 2 |
| 13       | 1 |
| 14       | 2 |
| 15       | 1 |
| 16       | A |
| 17       | D |
| 18       | C |
| 19       | C |
| 20       | A |
| 21       | 1 |
| 22       | 1 |
| 23       | 1 |
| 24       | 1 |
| 25       | 1 |
| 26       | A |
| 27       | C |
| 28       | A |
| 29       | Α |

| 30 | Α |
|----|---|
|    |   |

**Prepared by :** PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : RANCHI REGION